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Abstract: We construct, for any dtarget > 0, a subset of a Euclidean space with Hausdorff dimension 

dtarget. The fractional part is realized by a linear, symmetric two-strip Smale horseshoe on [0, 1]2 with 

expansion λ > 2 (horizontal contraction 1/λ), C1+α-smoothed off the invariant set; in this model the 

invariant set has dimension D(λ) = 2ln2/lnλ, a continuous, strictly decreasing map with range (0, 2). 

The integer part follows from dimH (A × [0, 1]n ) = dimH (A) + n. We briefly recall the needed tools 

and give explicit examples. 

1. Introduction 

In classical Euclidean geometry, the dimension of a set is a non-negative integer, adequately 

describing smooth subsets, polyhedra, and other regular objects. However, sets generated by iterative 

processes in dynamical systems, such as invariant sets under specific maps, often exhibit intricate 

self-similar or self-affine structures that defy integer-dimensional classification. These sets, 

characterized by scaling behaviors across multiple scales, necessitate a generalized notion of 

dimension that can take non-integer values. While some dynamical systems may produce integer-

dimensional sets, such as periodic orbits, our focus is on complex sets with fractal properties. The 

development of fractal geometry and geometric measure theory provides a rigorous framework to 

assign real-valued dimensions to such sets, enabling precise quantification of their complexity in 

metric spaces. 

The foundation for generalized dimensions was established by Hausdorff in his seminal 1918 

paper[3], introducing Hausdorff measure and dimension. By defining a measure based on coverings 

with sets of arbitrary diameter, Hausdorff formalized fractional dimensions for any set in a metric 

space. This framework, refined by Abram Besicovitch and others, is sometimes called the Hausdorff-

Besicovitch dimension[2]. Initially theoretical curiosities, non-integer dimensional sets gained 

prominence with dynamical systems theory, which provided systematic mechanisms for their 

generation. 

In 1967, Smale’s survey outlined the horseshoe mechanism: a surface diffeomor-phism that 

stretches, folds, and re-inserts a rectangle to create a totally disconnected hyperbolic invariant set (a 

“horseshoe”)[10]. This provided a clean bridge between chaotic dynamics and fractal geometry. In 

parallel, dissipative models with so-called strange attractors—notably the H énon map and the Lorenz 

flow—motivated quantitative notions of complexity via fractal dimensions; here rigorous results 

primarily concern existence (e.g., [1] for H énon;for Lorenz), while most reported dimension values 

are numerical or refer to non-Hausdorff notions. The Kaplan–Yorke formula [5] is a widely used 

conjectural estimate from Lyapunov exponents. By contrast, for uniformly hyperbolic sets such as 

horseshoes, thermodynamic formalism yields rigorous formulas: on surfaces, Ma˜n´e proved the 

additivity 

dimH (Λ) = ds + du , 

where ds/u are given by pressure equations [6,]. In our linear two-strip model this reduces to ds = du 

= ln2/lnλ . 

2025 9th International Workshop on Materials Engineering and Computer Sciences (IWMECS 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/iwmecs.2025.059498



To construct sets with higher dimensions, the behavior of Hausdorff dimension under Cartesian 

products is essential. Classical results, going back to Marstrand, provide bounds rather than a general 

identity: for Borel (or analytic) sets A ⊂ Rm and B ⊂ Rn , 

dimH (A×B) ≥ dimH (A)+dimH (B) and dimH (A×B) ≤ dimH (A)+dimB (B), 

see Falconer [2, Ch. 7, Product formulae 7.2–7.3]; cf. [7]. Equality need not hold in general. 

However, since dimH ([0, 1]n ) = dimB ([0, 1]n ) = n, Falconer [2, Cor. 7.4] yields the identity dimH 

(A × [0, 1]n ) = dimH (A) + n, which is the only product case we will use (formalized below as 

Theorem 2.8 and Corollary 2.9). In parallel, Moran and Hutchinson formalized the dimension of self-

similar sets via the Moran– Hutchinson equation under the open set condition [2,8]. These tools enable 

precise dimension computations in dynamical and geometric contexts. 

This paper synthesizes these concepts to constructively prove that any positive real number dtarget > 

0 can be the Hausdorff dimension of a set in a metric space. The main theorem (Theorem 3.2) 

decomposes dtarget into an integer part n = ⌊dtarget ⌋ and a fractional part dfrac ∈ [0, 1). The fractional 

part is realized by tuning the expansion parameter of a Smale horseshoe map, whose invariant set’s 

dimension is a continuous function on (0, 2) (Proposition 3.1). The integer part is contributed by a 

Euclidean hypercube [0, 1]n. The final set, formed as their Cartesian product, has its dimension 

verified by the product rule (Theorem 2.8). Explicit examples for dimensions like √2, π, and a near-

boundary case are provided, alongside a discussion of alternative dynamical generators, emphasizing 

the horseshoe’s simplicity and explicit parameter dependence. 

This paper is organized as follows. Section 2 reviews the essential concepts of Hausdorff measure, 

dimension, self-similar sets, and the Smale horseshoe map. Section 3 presents the main theorem, 

proving the tunability of the horseshoe’s invariant set dimension and constructing sets with arbitrary 

positive dimensions. Section 4 provides explicit constructions for specific dimensions, including 

typical non-integer and near-boundary cases. Section 5 discusses alternative fractal generators and 

potential extensions, highlighting the method’s modularity and future research directions. 

2. Preliminaries 

This section reviews the essential concepts from geometric measure theory and dynamical systems 

that underpin the main construction of this paper. We introduce the definitions and key results for 

Hausdorff measure and dimension, the dimension theory of self-similar sets generated by iterative 

maps, and the Smale horseshoe map with its hyperbolic invariant set. These tools provide the 

mathematical framework to construct sets with arbitrary positive real Hausdorff dimensions. The 

primary reference for standard definitions and results is the comprehensive textbook by Falconer 
[2]{Moran, 1946 #8}. 

2.1. Hausdorff Measure and Dimension 

Hausdorff measure and dimension give a rigorous way to assign real-valued dimen- sions to sets 

in metric spaces, including invariant sets in dynamical systems. 

Definition 2.1 (Hausdorff outer measure). Let S ⊂ Rk , d ≥ 0, and δ > 0. The δ-approximate d-

dimensional Hausdorff outer measure is 

 

The d-dimensional Hausdorff measure is  

 

We use the unnormalized version (no dimensional constants), which does not affect the value of 

the Hausdorff dimension. 

The definition above is standard in fractal geometry. Alternative formulations, such as the 

spherical Hausdorff measure, include a normalizing constant (e.g., cd = πd/2/Γ(d/2+1)) to align with 
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Lebesgue measure in integer dimensions. Since this paper focuses on Hausdorff dimension, where 

constant factors do not affect the critical exponent, the simpler form suffices. 

Definition 2.2 (Hausdorff dimension). The Hausdorff dimension of S is the thresh- old at which 

the Hausdorff measure drops from ∞ to 0: 

dimH (S) = inf{d ≥ 0 : Hd (S) = 0}= sup{d ≥ 0 : Hd (S) = ∞}. 

These definitions allow non-integer dimensions for sets such as Cantor-like invari- ant sets 

generated by hyperbolic maps. For example, countable sets have dimH = 0, whereas any n-

dimensional set with positive Lebesgue measure in Rn has dimH = n. 

2.2. Dimension of Self-Similar and Product Sets 

To compute the Hausdorff dimension of fractal sets generated by iterative maps, such as the 

invariant set of the Smale horseshoe, we rely on the theory of self-similar sets. This framework, 

pioneered by Moran and formalized by Hutchinson, provides explicit formulas for dimensions under 

specific conditions [2,8]. We first define self-similar sets and present a key result for their dimension 

calculation. 

Definition 2.3 (Box-counting dimensions). Let E ⊂ Rk be bounded and let N(E,ε) denote the 

minimal number of closed balls of radius ε needed to cover E. The upper and lower box-counting 

dimensions (also called Minkowski dimensions) are 

 

If the two coincide we write dimB (E) for their common value. Always dimH (E) ≤ dimB (E) ≤ dimB 

(E). 

Definition 2.4 (Packing measure and packing dimension). Let E ⊂ Rk , s ≥ 0, δ > 0. Define the 

packing premeasure 

𝒫𝛿
𝑆(𝐸) = 𝑠𝑢𝑝{∑ (𝑑𝑖𝑎𝑚 𝐵𝑖)𝑠: {𝐵𝑖 = 𝐵(𝑥𝑖 , 𝜌𝑖)}𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑎𝑙𝑙𝑠, 𝑥𝑖 ∈ 𝐸, 𝜌𝑖 ≤ 𝛿𝑖 }, 

where diam Bi = 2ρi. 

Put and define the s-dimensional packing measure 

 

The packing dimension is 

dimP (E) = inf{s : Ps (E) = 0} = sup{s : Ps (E) = ∞}. 

References: Falconer [2, §3.4, eqs. (3.22)–(3.25)]. 

Definition 2.5 A set E ⊂ Rk is self-similar if it is the unique non-empty compact set satisfying 

, where each Si : Rk → Rk is a contracting similarity with scaling ratio ri ∈ (0, 1). 

The dimension of such sets can be determined under a geometric constraint. 

The following proposition, named after [2,8], provides a precise formula when the similarities 

satisfy a separation condition. 

Definition 2.6 (Moran–Hutchinson formula under the open set condition (OSC)). Let 

) be a self-similar set generated by contracting similarities with ratios ri ∈ (0, 1). If 

the open set condition (OSC) holds (i.e., there exists an open set O ⊂ Rk such that with 

disjoint images), the Hausdorff dimension dimH (E) = d is the unique solution to the Moran–

Hutchinson equation  If all ratios are equal, ri = r, then  

Proposition 2.7 (OSC self-similar sets: equality of dimensions). Let E ⊂ Rk be a self-similar 

set generated by similarities with ratios ri ∈ (0, 1) satisfying the open set condition (OSC), and let 

s be the unique solution of Σi ri
s = 1. Then 
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dimH (E) = dimB (E) = dimB (E) = dimB (E) = s, 

and moreover 0 < Hs (E) < ∞ . 

References: Falconer [2, Ch. 9, Thm. 9.3, eqs. (9.9), (9.11)]; see also Hutchinson [4, §5.2]. 

This result is critical for analyzing the Smale horseshoe’s invariant set, which decomposes locally 

into self-similar Cantor sets along stable and unstable directions. To construct sets with higher 

dimensions, we need a mechanism to combine lower-dimensional components. The following 

theorem, a standard result in fractal geometry, addresses the dimension of Cartesian products. 

Theorem 2.8 (Product bounds). Let A ⊂ Rm and B ⊂ Rn be Borel (or analytic) sets. Then 

dimH (A × B) ≥ dimH (A) + dimH (B), 

dimH (A × B) ≤ dimH (A) + dimB (B). 

References: Falconer [2, Ch. 7, Product formulae 7.2–7.3]. 

Corollary 2.9. For any set A ⊂ Rm and any integer n ≥ 0, 

dimH (A × [0, 1]n ) = dimH (A) + n. 

Proof. By Theorem 2.8, 

dimH (A × [0, 1]n ) ≥ dimH (A) + dimH ([0, 1]n ) = dimH (A) + n. 

For the upper bound, Theorem 2.8 gives 

dimH (A × [0, 1]n ) ≤ dimH (A) + dimB ([0, 1]n ) = dimH (A) + n, since dimB ([0, 1]n ) = n. Hence 

equality holds. 

References: Falconer [2, Ch. 7, Product formulae 7.2–7.3, Cor. 7.4]. 

Proposition 2.10 (Product additivity for OSC self-similar Cantor sets). Let Cri ⊂ R (i = 1, 2) be 

two-map self-similar Cantor sets with common ratios ri ∈ (0,
1

2
 ) satisfying the open set condition. 

Then 

dimH (Cr1·Cr2)= dimH (Cr1) + dimH (Cr2),  

Proof. By the Moran–Hutchinson formula and Proposition 2.7, each Cri satisfies  

 

the general product bounds (Falconer [2, Ch. 7, Product formulae 7.2–7.3]): 

dimH (A × B) ≥ dimH (A) + dimH (B), dimH (A × B) ≤ dimH (A) + dimB (B). 

Applying these with A = Cr1 and B = Cr2 and using dimB (Cr2) = dimH (Cr2) gives dimH (Cr1 ×Cr2) 

≤ dimH (Cr1)+dimH (Cr2). Together with the lower bound we obtain equality. 

References: product bounds — Falconer [2, Ch. 7, Product formulae 7.2–7.3]; equality for OSC 

self-similar sets — Falconer [2, Ch. 9, Thm. 9.3]. 

Corollary 2.11 As r1 , r2 ∈ (0, ) vary, the map 

 

is continuous with range (0, 2). 

2.3. The Smale Horseshoe and the Invariant Set 

The Smale horseshoe map, a cornerstone of hyperbolic dynamical systems, provides the primary 

mechanism for generating fractal sets in our construction. Its invariant set, characterized by a Cantor-

like structure, serves as a tunable fractal component whose Hausdorff dimension can be precisely 

controlled. We first define the horseshoe map and its action on a compact region. 

Definition 2.12. The Smale horseshoe map f : S → S is a diffeomorphism on a compact 

region S ⊂ R2 (e.g., the unit square [0, 1]2 ). It stretches S in one direction (typically vertical) with 
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expansion factor λ > 1, contracts in another (typically horizontal) with factor µ ∈ (0, 1), and folds 

the resulting set back into S. For a symmetric linear horseshoe with N = 2 strips, we set µ = 1/λ . 

This map’s hyperbolic dynamics generate a complex invariant set under iteration. The next 

definition formalizes this set, which is critical for our dimension-tuning strategy. 

Definition 2.13. The invariant set Λ of the Smale horseshoe map f is the set of points that 

remain in S under all forward and backward iterations: 

 

For a hyperbolic horseshoe, Λ is a Cantor set with a local product structure, homeomorphic in a 

neighborhood to the Cartesian product of two Cantor sets Cs and Cu in the stable (contracting) and 

unstable (expanding) directions, respectively. 

Standing assumptions (H) for the model horseshoe. We fix the square S = [0, 1]2 and 

consider a (piecewise affine) two-strip horseshoe fλ : S → S with vertical 

                      

 

Figure 1: A geometric illustration of the Smale Horseshoe map. 

As shown in Figure 1, the map f stretches, contracts, and folds a square, while the inverse map f-1 

performs the reverse operation, revealing the fractal structure. (Credit: XaosBits, licensed under FAL. 

Source: Wikimedia Commons) 

(H1) fλ˜ (S) ∩ S is the disjoint union of two vertical rectangles V0 , V1 ⊂ S, each of width µ 

and height 1, whose horizontal projections are [0,µ] and [1 — µ, 1]; hence the strips are strictly 

disjoint (equivalently, with r := µ = 1/λ, 2r < 1, i.e. λ > 2). 

(H2) fλ˜
-1(S)∩S is the disjoint union of two horizontal rectangles H0 , H1 ⊂ S, each of height µ 

and width 1, with vertical projections [0,µ] and [1—µ, 1] (equivalently, 2r < 1 with r = 1/λ, i.e. 

λ > 2). 

(H3) (Smoothing supported off the invariant set) There exists an open neighborhood U ⊂ S of 

the hyperbolic set Λλ and a C1+α diffeomorphism fλ defined on a neighborhood of S such that: (i) 

fλ = fλ on U (hence, on Λλ and a neighborhood of it the dynamics and derivatives coincide with 

those
 
of the C1+α smoothing that folds the elongated image back into S without creating overlaps 

across the two Markov branches. In particular, the two-branch Markov structure and the derivative 

data relevant to the invariant set are unchanged. 

(H4) The hyperbolic invariant set Λλ 
=∩

k∈Z fλ
k (S) is a saddle-type horseshoe with local 

product structure. piecewise-affine model fλ ); (ii) outside U we replace the corners of fλ by a Remark 

2.14 (Parameter regime) . For the one-dimensional slice IFS on (0, 1) the open set condition already 

holds for λ ≥ 2 (equivalently r = 1/λ ≤ ); see Lemma 2.16(i). In the two-dimensional horseshoe, 

however, we shall work throughout with λ > 2 

so that the two branch rectangles in (H1)–(H2) are strictly separated (i.e., 2r < 1), avoiding 
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boundary contact at λ = 2 and yielding a clean two-symbol Markov par- tition. This choice is 

geometric; the slice-IFS OSC at λ = 2 is not needed in our construction. 

Lemma 2.15 (Smoothing off
 
Λλ preserves slice IFS and pressure data). Under (H1), (H2), (H3), 

we have fλ = fλ on a neighborhood U ⊃ Λλ . Consequently, the one-dimensional first-return 

maps on local stable/unstable foliations of Λλ coincide with those of the piecewise-affine model fλ , 

yielding the same two-map similarity IFS with common ratio r = 1/λ and the same open set 

condition. Equivalently, the Holder potentials φs = log ∥Dfλ | Es ∥ and φu = log ∥Dfλ | Eu ∥ 

on Λλ agree with those of fλ , hence the associated pressures are identical. Proof. By (H3), fλ = 

fλ˜  on an open neighborhood U of Λλ . All local (un)stable plaques and their first-return maps 

are contained in U. Therefore the induced slice dynamics, the two similarity maps with ratio r = 

1/λ, the open set condition, and the thermodynamic potentials restricted to Λλ are exactly those of 

fλ .  

Lemma 2.16 (OSC for slice IFS and the role of the strict gap). Let r = 1/λ . Consider the 

two-map IFS on (0, 1) given by S0 (x) = rx and S1 (x) = rx + (1 — r). 

(1) (Slice IFS & OSC) For r ≤  (equivalently λ ≥ 2) we have S0 (O), S1 (O) ⊂ O and S0 (O) 

∩ S1 (O) = with O = (0, 1), so the open set condition holds. In particular, at r =  the two images 

are the disjoint open intervals (0, ) and (  , 1). 

(2) (Strict gap for a 2D horseshoe) To obtain a two-branch horseshoe in S = [0, 1]2 with 

disjoint Markov rectangles (a strictly positive separation), we impose 2r < 1, i.e. λ > 2. This ensures 

a clean symbolic dynamics and uniform hyperbolicity on the invariant set. Hence, throughout the 

paper we work under λ > 2. 

Proof. For the slice IFS take O = (0, 1). Then S0 (O) = (0, r) and S1 (O) = (1 — r,1) are disjoint 

open intervals whenever r ≤ (equivalently λ ≥ 2), so the OSC holds; at r = they meet only at x = in the 

closure, not in O. For the two-dimensional horseshoe, (H1)–(H2) ensure the two branch rectangles 

are strictly disjoint precisely. when 2r < 1 (i.e. λ > 2), which yields a clean Markov partition and 

uniform hyperbolicity; hence throughout we assume λ > 2 for the 2D model, even though the slice-

IFS OSC already holds at λ = 2. 

The local product structure of Λ is a key feature. In the general C1+α surface case, Ma~n é [6] 

proved the additivity dimH (Λ) = ds +du , where ds , du are given by pressure equations from 

thermodynamic formalism. In our linear symmetric two-strip model, each slice is self-similar, so the 

formula reduces to dimH (Λ) = dimH (Cs )+dimH (Cu ). This property, combined with the parameter 

dependence of λ, enables the precise tuning of dimH (Λ) in our main proof, as detailed in Section 3. 

3. Main Result and Constructive Proof 

With the foundational tools from geometric measure theory and dynamical systems established in 

Section 2, we now present the core results of this paper. Our objective is to construct sets with any 

positive real Hausdorff dimension through a systematic approach. The key insight is to leverage the 

Smale horseshoe map as a tunable fractal generator, producing an invariant set whose dimension can 

be precisely controlled within the interval (0, 2). This fractal component is then combined with a 

Euclidean component via the Cartesian product to achieve the desired dimension. We begin by 

proving the tunability of the horseshoe’s invariant set dimension, followed by the main theorem 

constructing sets for arbitrary positive dimensions. 

3.1. Tunability of the Horseshoe Invariant Set Dimension 

We establish that the Smale horseshoe map can generate an invariant set with any Hausdorff 

dimension in (0, 2) by adjusting its expansion parameter. This result is pivotal for constructing the 

fractal component required by the main theorem. 

Proposition 3.1. Under the standing assumptions (H) for a linear, symmetric two-

diffeomorphism fλ satisfies 
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Consequently, for any dfrac ∈ (0, 2) there exists λ = 41/dfrac > 2 such that dimH (Λλ ) = dfrac. 

Proof. Consider the linear, symmetric two-strip family {fλ(˜)} on S = [0, 1]2 under (H1)–(H2) with 

λ > 2 a˜nd µ = 1/λ < . By (H3) we take a C1+α diffeomorphism The invariant set Λλ is hyperbolic 

with local product structure (e.g. [9, Thm. 4.3]), and fλ is C1+α . By Ma˜n´e’s additivity on surfaces 

[6], dimH (Λλ ) = ds + du , and by Lemma 2.15 together with Proposition 2.6 the stable/unstable slice 

dimensions are 

 

By Lemma 2.16 and Lemma 2.15, both stable/unstable slices are two-map selfsimilar sets with 

common ratio r = 1/λ satisfying the OSC, so by Proposition 2.6 we compute ds = dimH (Cs ) and du 

= dimH (Cu ). 

(1) Stable Dimension (ds ): The set Cs is formed by N = 2 similarities of common ratio r = 

1/λ < ; hence, by Proposition 2.6 

 

(2) Unstable Dimension (du ): Similarly, 

 

Summing the dimensions, we obtain the total dimension as a function of λ: 

 

Continuity. Since lnλ is continuous and strictly positive on (2, ∞ ), the map λ →}  is 

continuous there. Hence D(λ) = 2ln2 · (lnλ)-1 is continuous on (2, ∞ ). 

Monotonicity. A direct derivative computation shows 

 

so D is strictly decreasing on (2, ∞ ). 

Range. The endpoint limits are 

 

Because the domain (2, ∞ ) is open, the value 2 is not attained (only approached as λ → 2+ ), and 

0 is only a limit as λ → ∞ . Combining the strict monotonicity with these limits yields 

D ((2, ∞ )) = (0, 2). 

Since we adopt λ > 2 for strict separation (Remark 2.14), the value 2 is not attained and only 

appears in the limit λ → 2+ 

Solving for λ (existence and uniqueness). Given any target dfrac ∈ (0, 2), the intermediate value 

theorem and strict monotonicity imply there exists a unique λ0 ∈ (2, ∞ ) such that D(λ0 ) = dfrac. 

Solving 
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Note that dfrac < 2 implies λ0 > 41/2 = 2, so indeed λ0 ∈ (2, ∞ ), and as dfrac → 0+ we have λ0 → ∞ . 

Therefore, for this λ0 the horseshoe map fλ0 yields an invariant set Λλ0 with dimH (Λλ0) = dfrac. 

Moreover, by the branch-preserving smoothing condition (H3) together with Lemma 2.15, the slice 

IFS and their contraction ratio r = 1/λ are unchanged by smoothing near the two branches; hence the 

above formula for D(λ) coincides with that of the piecewise-affine model and is unaffected by the 

smoothing step. This completes the proof. 

3.2. Construction of Any Positive Real Hausdorff Dimension 

Having established the tunability of the Smale horseshoe’s invariant set dimension in Proposition 

3.1, we now construct a set with any positive real Hausdorff dimension. The proof combines the 

fractal component from the horseshoe with a Euclidean component via the Cartesian product, 

leveraging the dimension product rule. 

Theorem 3.2. For any positive real number dtarget > 0, there exists a set S such that its Hausdorff 

dimension satisfies dimH (S) = dtarget. 

Proof. Let dtarget > 0 be the desired Hausdorff dimension. We construct the set S in four explicit 

steps. 

(1) Dimension Decomposition: Decompose dtarget into its integer part n = ldtarget and fractional 

part dfrac = dtarget — n. By definition, n ≥ 0 is an integer, and dfrac ∈ [0, 1). 

(2) Fractal Component: Construct a set M C R2 with dimH (M) = dfrac. (2.1). If dfrac = 0, let M = 

{p} C R2 be a singleton, so dimH (M) = 0 by the definition of Hausdorff dimension. (2.2). If dfrac ∈ 

(0, 1), note that (0, 1) C (0, 2). By Proposition 3.1, there exists a Smale horseshoe map fλ with 

invariant set M = Λλ C R2 such that dimH (M) = dfrac , achieved by setting λ = 41/dfrac . 

(3) Integer Component: Construct a set E C Rn with dimH (E) = n. (3.1). If n = 0, let E = {q} C 

R0 be a singleton (where R0 denotes a point), so dimH (E) = 0. In this case, S = M × E M. (3.2). If n > 

0, let E = [0, 1]n C Rn , the n-dimensional unit hypercube, with dimH (E) = n (cf. [2]). 

(4) Combination and Verification: Define the final set S = M × E C R2+n. By Corollary 2.9 with 

E = [0, 1]n , the Hausdorff dimension is: 

dimH (S) = dimH (M) + dimH (E) = dfrac + n = dtarget. 

This construction produces a set S with the desired dimension, completing the proof. 

The embedding space R2+n ensures the Cartesian product is well-defined, but its dimension does 

not affect dimH (S). Alternative embeddings or choices of M and E may alter topological properties, 

as discussed in Section 5 

4. Constructing Sets with Arbitrary Positive Hausdorff Dimensions via Smale Horseshoe 

To illustrate the constructive proof of Theorem 3.2, this section provides explicit constructions of 

sets with specific Hausdorff dimensions, showcasing the versatility of the four-step method outlined 

in Section 3. We first present examples for typical non-integer dimensions √2 and π, demonstrating 

the Smale horseshoe’s tunability for moderate fractional parts (Subsection 4.1). We then analyze the 

expansion parameter λ’s behavior and construct a near-boundary example for a dimension close to 

an integer, highlighting the method’s performance under extreme dynamical tuning (Subsection 4.2). 

These examples illustrate the method’s flexibility across a range of target dimensions. 

4.1. Construction of Typical Non-integer Dimensions Sets 

We present two detailed constructions, applying the method of Theorem 3.2 to target dimensions 

√2 and π . A summary table compares the key parameters of each construction. 

(1) Construction for dtarget  

1) Dimension Decomposition: Compute the integer part n = ⌊√2⌋ = 1 and fractional part dfrac 

= √2 — 1. 

2) Fractal Component: Since dfrac ∈ (0, 1) ⊂ (0, 2), apply Proposition 3.1 to construct a Smale 
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horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that dimH (M) = √2 — 1. From Proposition 

3.1, set 

λ = 4 1/√2-1 . 

3) Integer Component: For n = 1, let E = [0, 1] ⊂ R1 , the unit interval, with dimH (E) = 1. 

4) Combination and Verification: Form S = M × E ⊂ R3 . By Corollary 2.9, 

dimH (S) = dimH (M) + dimH (E) = (2 — 1) + 1 = √2. 

(2) Construction for dtarget = π: 

1) Dimension Decomposition: Compute the integer part n = ⌊π⌋ = 3 and fractional part dfrac 

= π — 3. 

2) Fractal Component: Since dfrac ∈ (0, 1) ⊂ (0, 2), apply Proposition 3.1 to construct a Smale 

horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that dimH (M) = π — 3. Set 

λ = 4 π-3 . 

3) Integer Component: For n = 3, let E = [0, 1]3 ⊂ R3 , the unit cube, with dimH (E) = 3. 

4) Combination and Verification: Form S = M × E ⊂ R5 . By Corollary 2.9, dimH (S) = dimH 

(M) + dimH (E) = (π — 3) + 3 = π .                                                  

4.2. Construction of Near-integer Dimension Sets and Λ Parameter Analysis 

The examples in Subsection 4.1, constructing sets with non-integer dimensions √2 and π, illustrate 

the Smale horseshoe’s ability to tune the fractal component for moderate fractional dimensions, as 

shown in Table 1. Here, we analyze the behavior of the expansion parameter λ and provide a near-

boundary (i.e., near-integer) example for dtarget = 3.01 to demonstrate the method’s performance 

when the fractional part is very small. 

Table 1: Summary of constructions for dimensions √2 and π . 

Parameter dtarget = √2 dtarget =  π  

Integer Part (n) 1 3 

Fractional Part (dfrac ) √2 -1 π-3 

Expansion Rate (λ) 4 1/
√2-1  4 1/(

π-3)
 

Fractal Component (M) Λλ ⊂ R
2
 Λλ ⊂ R

2
 

Integer Component (E) [0, 1] ⊂ R1 [0, 1]3 ⊂ R
3
 

Final Set (S = M × E) ⊂ R
3
 ⊂ R

5
 

Hausdorff Dimension (dimH (S)) √2 π 

From Proposition 3.1, the dimension of the Smale horseshoe’s invariant set is D(λ) = 2ln2/lnλ . 

In our construction we only need fractional parts in (0, 1), in which case we set λ = 41/dfrac 

so that D(λ) = dfrac. Over this range, λ is strictly decreasing in dfrac , with λ → ∞ as dfrac 

→ 0+ and λ → 4+ as dfrac → 1- . Thus, small fractional parts are the genuinely expensive 

regime (requiring extremely large unstable expansion), while fractional parts close to 1 correspond 

to moderate values of λ near 4. 

To illustrate this behavior, we construct a set with dtarget = 3.01, whose fractional part is dfrac 

= 0.01. 

Construction for dtarget =  3 .01 :  

(1) Dimension Decomposition: Compute the integer part n = ⌊3.01⌋ = 3 and the fractional part 

dfrac = 3.01 — 3 = 0.01. 

(2) Fractal Component: Since dfrac = 0.01 ∈ (0, 1), apply Proposition 3.1 to construct a Smale 
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horseshoe map fλ with invariant set M = Λλ ⊂ R2 such that dimH (M) = 0.01. Set 

λ 100 = 2200 ≈ 1.6 × 1060 . 

The set M is a Cantor-like set, totally disconnected with zero Lebesgue measure (cf. [9, §4.3]). 

(3) Integer Component: For n = 3, let E = [0, 1]3 ⊂ R3 , the unit cube, with dimH (E) = 3. 

(4) Combination and Verification: Form S = M × E ⊂ R5 . By Corollary 2.9, dimH (S) = 

dimH (M) + dimH (E) = 0.01 + 3 = 3.01. 

The resulting set S combines a Cantor-like fractal with a 3-dimensional Euclidean component, 

embedded in R5 . 

This near-integer example requires extreme tuning of λ: here λ = 4100 ≈ 1.6 × 1060 , reflecting 

a very strong unstable expansion when the fractional part dfrac is tiny. This highlights the true 

dynamical cost of approaching an integer dimension in our construction. 

5. Examples 

The constructive proof in Section 3 and the examples in Section 4 demonstrate a systematic method 

to achieve any positive real Hausdorff dimension using the Smale horseshoe map as a tunable fractal 

generator. This section explores alternative approaches to generate the fractal component and 

discusses the broader implications of the construction. We first examine other systems capable of 

producing fractal sets with tunable dimensions, highlighting the modularity of our framework. Then, 

we reflect on the method’s generality and potential extensions within dynamical systems and 

geometric measure theory. 

5.1. Alternative Fractal Generators for Fractional Dimension Components  

The construction in Theorem 3.2 is modular: the fractional component need not be produced by 

a horseshoe. Other parameter–dependent fractals can be used, provided we can control their Hausdorff 

dimension on a target interval. When the desired dimension exceeds the integer dimension of the 

ambient space, we simply increase the ambient dimension; in practice we take Rm with m ≥ 

⌈dtarget ⌉ . Concretely, when dfrac ∈ (0, 1) one may work in Rn+1 with a 1D fractal factor × [0, 

1]n , while for dfrac ∈ [1, 2) one may work in Rn+2 with a 2D fractal factor × [0, 1]n. 

Self-similar Cantor sets (OSC). A versatile replacement of the horseshoe is the generalized 

two-map Cantor set Cr ⊂ R: start with [0, 1] and, at each step, remove the open middle interval of 

length 1 − 2r, keeping two intervals of length r ∈ (0, ). This self-similar set satisfies the open 

set condition (OSC), and the Moran–Hutchinson formula yields 

0 < HdimH (Cr)(Cr )  < ∞ [2,  4,  8].  

As r ↑  , dimH (Cr ) ↑ 1, so (0, 1) is covered continuously. Hence for any dfrac ∈ (0, 1) we may 

take 

r = 2-1/dfrac ∈ 
(0

, , dimH (Cr ) = dfrac , 

and use M = Cr as the fractional component in Theorem 3.2. 

To cover (0, 2) with purely self-similar factors, consider a product Cr1 × Cr2 C R2 with ri ∈ (0, 

). Since each 1D factor is an OSC self-similar set, one has dimH = dimB for each factor [2, Thm. 

9.3]. Combining this with the general product bounds [2, Eq. (7.6) and Eq. (7.7)] yields the equality 
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Therefore the range (0, 2) is obtained continuously by varying (r1 , r2 ). In particular, for any 

dfrac ∈ (1, 2) one can choose dimH (Cr1) = dimH (Cr2) = dfrac (e.g., r1 = r2 = 2-2/dfrac), so 

that dimH (Cr1 × Cr2) = dfrac. This 2D Cantor product can replace the horseshoe component M 

when a 1D Cantor factor does not suffice. 

Chaotic attractors as numerical substitutes. Chaotic attractors from other dynamical 

systems also offer parameter-dependent fractals. For the H énon map f(x, y) = (1—ax2 +y, bx), there 

are foundational rigorous results on chaotic dynamics and SRB-type behavior [4], but we do not rely 

on a rigorous Hausdorff-dimension formula; reported “dimension values” in the literature are 

typically numerical estimates (and in practice may refer to information/correlation/Kaplan-Yorke 

dimensions). For the classical Lorenz system (σ,ρ,β) = (10, 28, 8/3), numerical studies also report 

fractal-dimension estimates near 2 (often around 2.06); see, e.g., Viswanath [9] for an analysis of 

fractal properties of the Lorenz attractor. These systems thus provide numerically tunable alternatives 

to the horseshoe, but, unlike the explicit formula in Proposition 3.1, they do not furnish an analytic 

dimension function covering the full (0, 2) range. 

5.2. Generalizations and Future Directions 

The alternative generators in Subsection 5.1 illustrate the modularity of our construction, 

allowing flexibility in the fractal component. Here, we explore broader generalizations, leveraging 

iterated function systems (IFS) as a general framework for fractal generation, and discuss 

topological properties and future research directions in dynamical systems and geometric measure 

theory. 

The construction in Theorem 3.2 relies on the additive property of Hausdorff dimensions 

under Cartesian products (Theorem 2.8). This approach extends beyond the Smale horseshoe and 

the alternatives in Subsection 5.1. Any parameterdependent IFS producing a fractal set with a 

continuous dimension function over a sufficient range can replace the horseshoe. For example, an 

IFS with variable contraction ratios in Rm can generate fractal components with dimensions in (0, 

k) for some k > 0 (cf. [4]). Combining such a component with a Euclidean set in Rn extends the 

method to dimensions beyond (0, 2), provided the dimension function’s continuity is verified. 

The topological properties of the constructed sets offer another avenue for generalization. The 

Smale horseshoe’s invariant set Λλ is a Cantor set, totally disconnected with zero Lebesgue measure 
[10]. The final set S = M × E inherits properties from its components; for instance, modifying E 

to a fractal set with integer dimension, under conditions ensuring Borel set properties, preserves 

dimH (S) while altering connectedness or compactness [2]. Analyzing the Hausdorff measure of S at 

its critical dimension could further elucidate its geometric structure. 

Future research could investigate the uniqueness of the constructed sets. While Theorem 3.2 ensures 

existence, comparing sets generated by different systems (e.g., Smale horseshoe versus H énon map) 

for the same dimension may reveal variations in symbolic dynamics or stability [10]. Extending the 

construction to non-Euclidean metric spaces, such as hyperbolic manifolds, could also enhance its 

applicability in dynamical systems. These directions highlight the synergy between fractal geometry 

and chaotic dynamics, opening new paths for studying sets with prescribed dimensions. 
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