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Abstract: We construct, for any drwarget > 0, a subset of a Euclidean space with Hausdorff dimension
drarget. The fractional part is realized by a linear, symmetric two-strip Smale horseshoe on [0, 1]? with
expansion A > 2 (horizontal contraction 1/A), C'**-smoothed off the invariant set; in this model the
invariant set has dimension D(A) = 2In2/InA, a continuous, strictly decreasing map with range (0, 2).
The integer part follows from dimu (A %[0, 1]") = dimu (A) + n. We briefly recall the needed tools
and give explicit examples.

1. Introduction

In classical Euclidean geometry, the dimension of a set is a non-negative integer, adequately
describing smooth subsets, polyhedra, and other regular objects. However, sets generated by iterative
processes in dynamical systems, such as invariant sets under specific maps, often exhibit intricate
self-similar or self-affine structures that defy integer-dimensional classification. These sets,
characterized by scaling behaviors across multiple scales, necessitate a generalized notion of
dimension that can take non-integer values. While some dynamical systems may produce integer-
dimensional sets, such as periodic orbits, our focus is on complex sets with fractal properties. The
development of fractal geometry and geometric measure theory provides a rigorous framework to
assign real-valued dimensions to such sets, enabling precise quantification of their complexity in
metric spaces.

The foundation for generalized dimensions was established by Hausdorff in his seminal 1918
paperl® introducing Hausdorff measure and dimension. By defining a measure based on coverings
with sets of arbitrary diameter, Hausdorff formalized fractional dimensions for any set in a metric
space. This framework, refined by Abram Besicovitch and others, is sometimes called the Hausdorff-
Besicovitch dimension!?. Initially theoretical curiosities, non-integer dimensional sets gained
prominence with dynamical systems theory, which provided systematic mechanisms for their
generation.

In 1967, Smale’s survey outlined the horseshoe mechanism: a surface diffeomor-phism that
stretches, folds, and re-inserts a rectangle to create a totally disconnected hyperbolic invariant set (a
“horseshoe”)*%. This provided a clean bridge between chaotic dynamics and fractal geometry. In
parallel, dissipative models with so-called strange attractors—notably the H"enon map and the Lorenz
flow—motivated quantitative notions of complexity via fractal dimensions; here rigorous results
primarily concern existence (e.g., [ for Henon;for Lorenz), while most reported dimension values
are numerical or refer to non-Hausdorff notions. The Kaplan—Yorke formula [5] is a widely used
conjectural estimate from Lyapunov exponents. By contrast, for uniformly hyperbolic sets such as
horseshoes, thermodynamic formalism yields rigorous formulas: on surfaces, Ma™n’e proved the
additivity

dimu (A)=d* +d",

where d* are given by pressure equations 1. In our linear two-strip model this reduces to d® = d"
= In2/In\ .
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To construct sets with higher dimensions, the behavior of Hausdorff dimension under Cartesian
products is essential. Classical results, going back to Marstrand, provide bounds rather than a general
identity: for Borel (or analytic) sets Ac R™and B c R",

dimu (AxB) > dimu (A)+dimu (B) and dimn (AxB) < dimn (A)+dims (B),

see Falconer [2, Ch. 7, Product formulae 7.2-7.3]; cf. [l. Equality need not hold in general.
However, since dimu ([0, 1]") = dims ([0, 1]" ) = n, Falconer [2, Cor. 7.4] yields the identity dimn
(A =<0, 1]" ) = dimu (A) + n, which is the only product case we will use (formalized below as
Theorem 2.8 and Corollary 2.9). In parallel, Moran and Hutchinson formalized the dimension of self-
similar sets via the Moran— Hutchinson equation under the open set condition >8], These tools enable
precise dimension computations in dynamical and geometric contexts.

This paper synthesizes these concepts to constructively prove that any positive real number dtarget >
0 can be the Hausdorff dimension of a set in a metric space. The main theorem (Theorem 3.2)
decomposes diarget iNto an integer part n = |diarget | and a fractional part dirac € [0, 1). The fractional
part is realized by tuning the expansion parameter of a Smale horseshoe map, whose invariant set’s
dimension is a continuous function on (0, 2) (Proposition 3.1). The integer part is contributed by a
Euclidean hypercube [0, 1]". The final set, formed as their Cartesian product, has its dimension
verified by the product rule (Theorem 2.8). Explicit examples for dimensions like \2, m, and a near-
boundary case are provided, alongside a discussion of alternative dynamical generators, emphasizing
the horseshoe’s simplicity and explicit parameter dependence.

This paper is organized as follows. Section 2 reviews the essential concepts of Hausdorff measure,
dimension, self-similar sets, and the Smale horseshoe map. Section 3 presents the main theorem,
proving the tunability of the horseshoe’s invariant set dimension and constructing sets with arbitrary
positive dimensions. Section 4 provides explicit constructions for specific dimensions, including
typical non-integer and near-boundary cases. Section 5 discusses alternative fractal generators and
potential extensions, highlighting the method’s modularity and future research directions.

2. Preliminaries

This section reviews the essential concepts from geometric measure theory and dynamical systems
that underpin the main construction of this paper. We introduce the definitions and key results for
Hausdorff measure and dimension, the dimension theory of self-similar sets generated by iterative
maps, and the Smale horseshoe map with its hyperbolic invariant set. These tools provide the
mathematical framework to construct sets with arbitrary positive real Hausdorff dimensions. The
primary reference for standard definitions and results is the comprehensive textbook by Falconer
[21fMoran, 1946 #8}.

2.1. Hausdorff Measure and Dimension

Hausdorff measure and dimension give a rigorous way to assign real-valued dimen- sions to sets
in metric spaces, including invariant sets in dynamical systems.

Definition 2.1 (Hausdorff outer measure). Let S ¢ RX, d > 0, and & > 0. The d-approximate d-
dimensional Hausdorff outer measure is

oo

H{(S) = inf { Z ( diam U?-)d . S C

i=1 i

U;, diamU; < § }

s

1

The d-dimensional Hausdorff measure is
H(S) = supHE(S) = lim HE(S).
6>0 840

We use the unnormalized version (no dimensional constants), which does not affect the value of
the Hausdorff dimension.

The definition above is standard in fractal geometry. Alternative formulations, such as the
spherical Hausdorff measure, include a normalizing constant (e.g., ca = z%%/I'(d/2+1)) to align with

499



Lebesgue measure in integer dimensions. Since this paper focuses on Hausdorff dimension, where
constant factors do not affect the critical exponent, the simpler form suffices.

Definition 2.2 (Hausdorff dimension). The Hausdorff dimension of S is the thresh- old at which
the Hausdorff measure drops from oo to 0:

dimH (S) = inf{d > 0 : HI(S) = 0}=sup{d > 0 : HI(S) = oo}.

These definitions allow non-integer dimensions for sets such as Cantor-like invari- ant sets
generated by hyperbolic maps. For example, countable sets have dimy = 0, whereas any n-
dimensional set with positive Lebesgue measure in Rn has dimn = n.

2.2. Dimension of Self-Similar and Product Sets

To compute the Hausdorff dimension of fractal sets generated by iterative maps, such as the
invariant set of the Smale horseshoe, we rely on the theory of self-similar sets. This framework,
pioneered by Moran and formalized by Hutchinson, provides explicit formulas for dimensions under
specific conditions 281, We first define self-similar sets and present a key result for their dimension
calculation.

Definition 2.3 (Box-counting dimensions). Let E ¢ R¥ be bounded and let N(E,¢) denote the
minimal number of closed balls of radius € needed to cover E. The upper and lower box-counting
dimensions (also called Minkowski dimensions) are

— _ logN(E,g) .. . . logN(E,¢)
1 E)=limsup —————+=,d E)=1 f—=—"-
dimg(F) 11;1_;351]) log(1/2) dimg(E) im in og(1/2)

If the two coincide we write dims (E) for their common value. Always dimn (E) < dims (E) < dims
(Eybefinition 2.4 (Packing measure and packing dimension). Let E ¢ R, s >0, § > 0. Define the
packing premeasure

P5 (E) = sup{Y;(diam B,)S: {B; = B(x;, p;)}pairwise disjoint closed balls, x; € E, p; < 8},
where diam Bi = 2pi.

put Po(E) = limso P5(E) and define the s-dimensional packing measure

P*(E) = inf { N PiE): Ec| Ej}.
J J

The packing dimension is
dime (E) = inf{s : Ps (E) =0} = sup{s : Ps (E) = o}.

References: Falconer [2, 8.4, egs. (3.22)—(3.25)].

Definition 2.5 A set E c R¥ is self-similar if it is the unique non-empty compact set satisfying
B =UiLi Si(F) \where each Si : Rk — R¥ is a contracting similarity with scaling ratio ri € (0, 1).

The dimension of such sets can be determined under a geometric constraint.

The following proposition, named after 281 provides a precise formula when the similarities
satisfy a separation condition.

Definition 2.6 (Moran—Hutchinson formula under the open set condition (OSC)). Let

N ¢
E = Usw, Sf(E) be a self-similar set generated by contracting similarities with ratios ri € (0, 1). If

the open set condition (OSC) holds (i.e., there exists an open set O c R¥ such that Uiz $:(0) © O with

disjoint images), the Hausdorff dimension dimu (E) = d is the unique solution to the Moran-
In N

. . N d_ .
Hutchinson equation 2_i=178 =1 If all ratios are equal, ri =, then ¢ = i(i/n

Proposition 2.7 (OSC self-similar sets: equality of dimensions). Let E c RK be a self-similar
set generated by similarities with ratios rj € (0, 1) satisfying the open set condition (OSC), and let

s be the unique solution of = rj° = 1. Then
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dimH (E) = dimB (E) = dimB (E) = dimp (E) = s,

and moreover 0 < HS (E) < o,

References: Falconer [2, Ch. 9, Thm. 9.3, egs. (9.9), (9.11)]; see also Hutchinson [4, &.2].

This result is critical for analyzing the Smale horseshoe’s invariant set, which decomposes locally
into self-similar Cantor sets along stable and unstable directions. To construct sets with higher
dimensions, we need a mechanism to combine lower-dimensional components. The following
theorem, a standard result in fractal geometry, addresses the dimension of Cartesian products.

Theorem 2.8 (Product bounds). Let A ¢ R™ and B c R" be Borel (or analytic) sets. Then

dimu (A x B) > dimn (A) + dimu (B),
dimx (A x B) < dimn (A) + dime (B).
References: Falconer [2, Ch. 7, Product formulae 7.2-7.3].
Corollary 2.9. For any set A € R™ and any integer n > 0,
dimu (A X<[0, 1]") = dimu (A) + n.
Proof. By Theorem 2.8,
dimu (A %[0, 1]" ) > dimn (A) + dimn ([0, 1]") = dimu (A) +n.

For the upper bound, Theorem 2.8 gives

dimn (A %[0, 1]" ) <dimn (A) + dims ([0, 1]") = dimn (A) + n, since dims ([0, 1]" ) = n. Hence
equality holds.

References: Falconer [2, Ch. 7, Product formulae 7.2-7.3, Cor. 7.4].

Proposition 2.10 (Product additivity for OSC self-similar Cantor sets). Let Cri c R (i = 1, 2) be
two-map self-similar Cantor sets with common ratios ri € (O,%) satisfying the open set condition.
Then

In2

dimH (Cr1 Cr2)= dimH (Cr1) + dimp (Cr2), () = iy

Proof. By the Moran—Hutchinson formula and Proposition 2.7, each Cii satisfies

dimg (C),) = dimp(C,,) = 111(1111/%- ;- For arbitrary Borel (or analytic) sets A, B one has

the general product bounds (Falconer [2, Ch. 7, Product formulae 7.2—7.3]):
dimu (A x B) > dimn (A) + dimu (B), dimu (A x B) <dimn (A) + dims (B).

Applying these with A = Cr1 and B = Cr2 and using dimB (Cr2) = dimH (Cr2) gives dimn (Cr1 XCr2)
< dimH (Cr1)+dimn (Cr2). Together with the lower bound we obtain equality.

References: product bounds — Falconer [2, Ch. 7, Product formulae 7.2-7.3]; equality for OSC
self-similar sets — Falconer [2, Ch. 9, Thm. 9.3].

Corollary 211 Asr1,r2 € (0, %) vary, the map

~ In2 n In2
" In(1/ry)  In(1/rs)

¥

(ry,72) — dimg(C), x Cy,)

is continuous with range (0, 2).
2.3. The Smale Horseshoe and the Invariant Set

The Smale horseshoe map, a cornerstone of hyperbolic dynamical systems, provides the primary
mechanism for generating fractal sets in our construction. Its invariant set, characterized by a Cantor-
like structure, serves as a tunable fractal component whose Hausdorff dimension can be precisely
controlled. We first define the horseshoe map and its action on a compact region.

Definition 2.12. The Smale horseshoe map f : S — S is a diffeomorphism on a compact

region S c R2 (e.g., the unit square [0, 1]2). It stretches S in one direction (typically vertical) with
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expansion factor A > 1, contracts in another (typically horizontal) with factor p € (0, 1), and folds
the resulting set back into S. For a symmetric linear horseshoe with N = 2 strips, we set = 1/A.
This map’s hyperbolic dynamics generate a complex invariant set under iteration. The next
definition formalizes this set, which is critical for our dimension-tuning strategy.
Definition 2.13. The invariant set A of the Smale horseshoe map f is the set of points that
remain in S under all forward and backward iterations:

A=) 4.
keL
For a hyperbolic horseshoe, A is a Cantor set with a local product structure, homeomorphic in a
neighborhood to the Cartesian product of two Cantor sets Cs and Cy in the stable (contracting) and
unstable (expanding) directions, respectively.

Standing assumptions (H) for the model horseshoe. We fix the square S = [0, 1]2 and
consider a (piecewise affine) two-strip horseshoe f), : S — S with vertical
expansion A > 2 and horizontal contraction u = 1/\ < % such that:

f"( ’ ) -

N A o
f f

Figure 1: A geometric illustration of the Smale Horseshoe map.

As shown in Figure 1, the map f stretches, contracts, and folds a square, while the inverse map
performs the reverse operation, revealing the fractal structure. (Credit: XaosBits, licensed under FAL.
Source: Wikimedia Commons)

(H1) TA(S) N S is the disjoint union of two vertical rectangles Vo, V1 c S, each of width
and height 1, whose horizontal projections are [0, and [1 — @4 1]; hence the strips are strictly
disjoint (equivalently, with r := = 1/A, 2r < 1,i.e. A > 2).

(H2) I‘)Cl(S)ﬂS is the disjoint union of two horizontal rectangles Ho , H1 < S, each of height
and width 1, with vertical projections [0, and [1— 1] (equivalently, 2r < 1 with r = 1/A, i.e.
A > 2).

(H3) (Smoothing supported off the invariant set) There exists an open neighborhood U < S of
the hyperbolic set A) and a clta diffeomorphism f), defined on a neighborhood of S such that: (i)
fr = fr on U (hence, on Ax and a neighborhood of it the dynamics and derivatives coincide with
those of the c1+@ smoothing that folds the elongated image back into S without creating overlaps
across the two Markov branches. In particular, the two-branch Markov structure and the derivative
data relevant to the invariant set are unchanged.

(H4) The hyperbolic invariant set Aj =N e 7 (S) is a saddle-type horseshoe with |ocal
kez

product structure. piecewise-affine model f..); (ii) outside U we replace the corners of fi. by a Remark
2.14 (Parameter regime) . For the one-dimensional slice IFS on (0, 1) the open set condition already
holds for A > 2 (equivalently r = 1/A <); see Lemma 2.16(i). In the two-dimensional horseshoe,
however, we shall work throughout with A > 2

so that the two branch rectangles in (H1)-(H2) are strictly separated (i.e., 2r < 1), avoiding
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boundary contact at A = 2 and yielding a clean two-symbol Markov par- tition. This choice is
geometric; the slice-1FS OSC at A = 2 is not needed in our construction.

Lemma 2.15 (Smoothing off A) preserves slice IFS and pressure data). Under (H1), (H2), (H3),
we have f), = f), on a neighborhood U > Aj) . Consequently, the one-dimensional first-return
maps on local stable/unstable foliations of A), coincide with those of the piecewise-affine model fA ,
yielding the same two-map similarity IFS with common ratio r = 1/A and the same open set

condition. Equivalently, the Holder potentials ¢S = log // Df), |Es /#/ and ¢Y = log // Dfy, |Eu //
on A) agree with those of f), , hence the associated pressures are identical. Proof. By (H3), fa =

T2 on an open neighborhood U of A) . All local (un)stable plaques and their first-return maps
are contained in U. Therefore the induced slice dynamics, the two similarity maps with ratio r =
1/, the open set condition, and the thermodynamic potentials restricted to Ax are exactly those of
fa.

Lemma 2.16 (OSC for slice IFS and the role of the strict gap). Let r = 1/A. Consider the
two-map IFS on (0, 1) given by Sp (x) =rx and S1 (X) =rx + (1 —).

(1) (Slice IFS & OSC) Forr < 3 (equivalently A > 2) we have S (0), S1 (O) < O and Sp (O)
N S1 (O) = with O = (0, 1), so the open set condition holds. In particular, at r = 3 the two images
are the disjoint open intervals (0, -—ﬁ) and (3, 1).

(2) (Strict gap for a 2D horseshoe) To obtain a two-branch horseshoe in S =[O0, 1]2 with
disjoint Markov rectangles (a strictly positive separation), we impose 2r<1, i.e. A > 2. This ensures
a clean symbolic dynamics and uniform hyperbolicity on the invariant set. Hence, throughout the
paper we work under A > 2.

Proof. For the slice IFS take O = (0, 1). Then SO (O) = (0, r) and S1 (O) = (1 —r,1) are disjoint
open intervals whenever r < (equivalently A > 2), so the OSC holds; at r = they meet only at x = in the
closure, not in O. For the two-dimensional horseshoe, (H1)—(H2) ensure the two branch rectangles
are strictly disjoint precisely. when 2r < 1 (i.e. A > 2), which yields a clean Markov partition and
uniform hyperbolicity; hence throughout we assume A > 2 for the 2D model, even though the slice-
IFS OSC already holds at A = 2.

The local product structure of A is a key feature. In the general C'*® surface case, Ma~ne [6]
proved the additivity dimn (A) = d°® +d" , where d* , d" are given by pressure equations from
thermodynamic formalism. In our linear symmetric two-strip model, each slice is self-similar, so the
formula reduces to dimu (A) = dimn (Cs )+dimu (Cu ). This property, combined with the parameter
dependence of A, enables the precise tuning of dimu (A) in our main proof, as detailed in Section 3.

3. Main Result and Constructive Proof

With the foundational tools from geometric measure theory and dynamical systems established in
Section 2, we now present the core results of this paper. Our objective is to construct sets with any
positive real Hausdorff dimension through a systematic approach. The key insight is to leverage the
Smale horseshoe map as a tunable fractal generator, producing an invariant set whose dimension can
be precisely controlled within the interval (0, 2). This fractal component is then combined with a
Euclidean component via the Cartesian product to achieve the desired dimension. We begin by
proving the tunability of the horseshoe’s invariant set dimension, followed by the main theorem
constructing sets for arbitrary positive dimensions.

3.1. Tunability of the Horseshoe Invariant Set Dimension

We establish that the Smale horseshoe map can generate an invariant set with any Hausdorff
dimension in (0, 2) by adjusting its expansion parameter. This result is pivotal for constructing the
fractal component required by the main theorem.

Proposition 3.1. Under the standing assumptions (H) for a linear, symmetric two-
diffeomorphism f, satisfies
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1

strip horseshoe with A > 2 and p = 1/A < 3, the invariant set Ay of the C'*°

2In2

dimg(Ay) = D(A) = R

Consequently, for any dirac € (0, 2) there exists A = 49 > 2 sych that dimn (AL ) = dfrac.

Proof. Consider the linear, symmetric two-strip family {fA(")} on S =0, 1]2 under (H1)—(H2) with
A>2and p=1/A<.By (H3) we take a Cl+a diffeomorphism The invariant set A\ is hyperbolic
with local product structure (e.g. [9, Thm. 4.3]), and fA is C1+a . By Ma™n’e’s additivity on surfaces
[6], dimH (AA ) =ds + du, and by Lemma 2.15 together with Proposition 2.6 the stable/unstable slice
dimensions are

In 2 . __ 2In2
ds =d, = 5. Hence D(X\) = 55=.

By Lemma 2.16 and Lemma 2.15, both stable/unstable slices are two-map selfsimilar sets with
common ratio r = 1/A satisfying the OSC, so by Proposition 2.6 we compute ds = dimn (Cs ) and du
=dimu (Cu).

(1) Stable Dimension (ds): The set Cs is formed by N = 2 similarities of common ratio r =
1/x < 3; hence, by Proposition 2.6

_ InN  In2
“In(l/r)  In X

dy = dimg (CY)

(2) Unstable Dimension (dy): Similarly,
InN  In2
In(1/r)  In A\
Summing the dimensions, we obtain the total dimension as a function of A:
In2 In2 2In2
+ = :
InA  InA In A

d, = dimg (C,) =

DA =d;+d, =

Continuity. Since InA is continuous and strictly positive on (2, «), the map A —} ﬁ is

continuous there. Hence D(A) = 2In2 -(Ink)'1 IS continuous on (2, ©).
Monotonicity. A direct derivative computation shows

d /2In2 2In2
D'(\) = —( ) —_— A>2),
W= Moz <0 (A>2).
so D is strictly decreasing on (2, «).
Range. The endpoint limits are
. 2In2 2In 2
S P =g =2 fim DO =77 =0

Because the domain (2, o0 ) is open, the value 2 is not attained (only approached as A — 2+ ), and
0 is only a limit as A — oo . Combining the strict monotonicity with these limits yields

D (2, ) = (0, 2).

Since we adopt A > 2 for strict separation (Remark 2.14), the value 2 is not attained and only
appears in the limit A — 27
Solving for A (existence and uniqueness). Given any target dirac € (0, 2), the intermediate value
theorem and strict monotonicity imply there exists a unique A0 € (2, o ) such that D(AO ) = dfrac.
Solving
2In2 2In2

e = —— <= In)j =
frac In >\g 0 dfrac

2In2
= A= exp( ) = 41/dmac,

frac
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Note that dfrac < 2 implies Ao > 442 =2, so indeed Mo € (2, 0 ), and as dfrac — 0+ we have ho — .

Therefore, for this Ao the horseshoe map fio yields an invariant set Axo with dimu (Axo) = dirac.
Moreover, by the branch-preserving smoothing condition (H3) together with Lemma 2.15, the slice
IFS and their contraction ratio r = 1/A are unchanged by smoothing near the two branches; hence the
above formula for D(L) coincides with that of the piecewise-affine model and is unaffected by the
smoothing step. This completes the proof.

3.2. Construction of Any Positive Real Hausdorff Dimension

Having established the tunability of the Smale horseshoe’s invariant set dimension in Proposition
3.1, we now construct a set with any positive real Hausdorff dimension. The proof combines the
fractal component from the horseshoe with a Euclidean component via the Cartesian product,
leveraging the dimension product rule.

Theorem 3.2. For any positive real number diarget > 0, there exists a set S such that its Hausdorff
dimension satisfies dimn (S) = dtarget.

Proof. Let diwarget > 0 be the desired Hausdorff dimension. We construct the set S in four explicit
steps.

(1) Dimension Decomposition: Decompose dtarget into its integer part n = ldarget and fractional
part dfrac = dtarget — n. By definition, n > 0 is an integer, and dfrac € [0, 1).

(2) Fractal Component: Construct a set M C R? with dimu (M) = dfrac. (2.1). If dfrac = 0, let M =
{p} C R2 be a singleton, so dimu (M) = 0 by the definition of Hausdorff dimension. (2.2). If dfrac €
(0, 1), note that (0, 1) C (0, 2). By Proposition 3.1, there exists a Smale horseshoe map fA with
invariant set M = AA C R2 such that dimn (M) = dfrac , achieved by setting A = 41/dfrac .

(3) Integer Component: Construct a set E C Rn with dimn (E) =n. (3.1). Ifn=0,letE={q} C
RO be a singleton (where RO denotes a point), so dimu (E) = 0. Inthis case, S =M <E M. (3.2). If n >
0, let E = [0, 1]n C Rn, the n-dimensional unit hypercube, with dimn (E) = n (cf. [2]).

(4) Combination and Verification: Define the final set S= M x<E C R2+n. By Corollary 2.9 with
E =0, 1]n, the Hausdorff dimension is:

dimy (S) = dimn (M) + dimu (E) = dfrac + N = dtarget.

This construction produces a set S with the desired dimension, completing the proof.

The embedding space R?*" ensures the Cartesian product is well-defined, but its dimension does
not affect dimwn (S). Alternative embeddings or choices of M and E may alter topological properties,
as discussed in Section 5

4. Constructing Sets with Arbitrary Positive Hausdorff Dimensions via Smale Horseshoe

To illustrate the constructive proof of Theorem 3.2, this section provides explicit constructions of
sets with specific Hausdorff dimensions, showcasing the versatility of the four-step method outlined
in Section 3. We first present examples for typical non-integer dimensions \2 and n, demonstrating
the Smale horseshoe’s tunability for moderate fractional parts (Subsection 4.1). We then analyze the
expansion parameter A’s behavior and construct a near-boundary example for a dimension close to
an integer, highlighting the method’s performance under extreme dynamical tuning (Subsection 4.2).
These examples illustrate the method’s flexibility across a range of target dimensions.

4.1. Construction of Typical Non-integer Dimensions Sets

We present two detailed constructions, applying the method of Theorem 3.2 to target dimensions
V2 and 7 . A summary table compares the key parameters of each construction.

(1) Construction for dtarget = V2:

1) Dimension Decomposition: Compute the integer part n = [\/Zj = 1 and fractional part dfrac
=\2 1,

2) Fractal Component: Since dfrac € (0, 1) < (0, 2), apply Proposition 3.1 to construct a Smale
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horseshoe map ), with invariant set M = A), c R2 such that dimy (M) = V2 — 1. From Proposition
3.1, set

A= 41N2-1 |

3) Integer Component: Forn=1, letE = [0, 1] c R1 , the unit interval, with dimH (E) = 1.
4) Combination and Verification: Form S =M XE c R3. By Corollary 2.9,
dimH (S) = dimH (M) + dimH (E) = (2 — 1) + 1 = V2,

(2) Construction for dtarget = n:

1) Dimension Decomposition: Compute the integer part n = [z = 3 and fractional part dfrac
=1 —3.

2) Fractal Component: Since dfrac € (0, 1) < (0, 2), apply Proposition 3.1 to construct a Smale

horseshoe map f), with invariant set M = A) c R2 such that dimH (M) = = — 3. Set
A=4mn-3 .

3) Integer Component: For n = 3, let E = [0, 1]3 (a R3, the unit cube, with dimH (E) = 3.
4) Combination and Verification: Form S =M XE c RO, By Corollary 2.9, dimH (S) = dimH
(M) +dimH (E) = (n — 3) + 3 =mx.
4.2. Construction of Near-integer Dimension Sets and A Parameter Analysis

The examples in Subsection 4.1, constructing sets with non-integer dimensions V2 and x, illustrate
the Smale horseshoe’s ability to tune the fractal component for moderate fractional dimensions, as
shown in Table 1. Here, we analyze the behavior of the expansion parameter A and provide a near-
boundary (i.e., near-integer) example for dtarget = 3.01 to demonstrate the method’s performance
when the fractional part is very small.

Table 1: Summary of constructions for dimensions V2 and =.

Parameter dtarget = \2 dtarget = @
Integer Part (n) 1 3
Fractional Part (dfrac) V2 -1 -3
Expansion Rate (}) 4121 4%3)
Fractal Component (M) A) C R’ A) C R’
Integer Component (E) [0,1] c RL [0,1 c R’
Final Set (S =M xE) cr’ cR’
Hausdorff Dimension (dimH (S)) V2 n

From Proposition 3.1, the dimension of the Smale horseshoe’s invariant set isD(L) = 2In2/InA.

In our construction we only need fractional parts in (0, 1), in which case we set A = 41/dfrac
so that D(A) = dfrac. Over this range, A is strictly decreasing in dfrac, with A — oo as dfrac

— 0% and A — 4% as dfrac — 1°. Thus, small fractional parts are the genuinely expensive
regime (requiring extremely large unstable expansion), while fractional parts close to 1 correspond
to moderate values of A near 4.

To illustrate this behavior, we construct a set with dtarget = 3.01, whose fractional part is dfrac
= 0.01.

Construction for dtarget = 3.01:

(1) Dimension Decomposition: Compute the integer part n =|3.01] = 3 and the fractional part
dfrac = 3.01 — 3 = 0.01.

(2) Fractal Component: Since dfrac = 0.01 € (0, 1), apply Proposition 3.1 to construct a Smale
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horseshoe map f), with invariant set M = A) c R2 such that dimH (M) =0.01. Set
A= daor = 4100 = 22005 1 6 1060

The set M is a Cantor-like set, totally disconnected with zero Lebesgue measure (cf. [9, &!.3]).

(3) Integer Component: For n = 3, let E =[O0, 1]3 c R3, the unit cube, with dimH (E) = 3.

(4) Combination and Verification: Form S =M XE c RO . By Corollary 2.9, dimH (S) =
dimHy (M) + dimH (E) = 0.01 + 3 = 3.01.

The resulting set S combines a Cantor-like fractal with a 3-dimensional Euclidean component,
embedded in R®.

This near-integer example requires extreme tuning of A: here A = 4100 ~ 16 <1090, reflecting
a very strong unstable expansion when the fractional part dfrac is tiny. This highlights the true
dynamical cost of approaching an integer dimension in our construction.

5. Examples

The constructive proof in Section 3 and the examples in Section 4 demonstrate a systematic method
to achieve any positive real Hausdorff dimension using the Smale horseshoe map as a tunable fractal
generator. This section explores alternative approaches to generate the fractal component and
discusses the broader implications of the construction. We first examine other systems capable of
producing fractal sets with tunable dimensions, highlighting the modularity of our framework. Then,
we reflect on the method’s generality and potential extensions within dynamical systems and
geometric measure theory.

5.1. Alternative Fractal Generators for Fractional Dimension Components

The construction in Theorem 3.2 is modular: the fractional component need not be produced by
a horseshoe. Other parameter—dependent fractals can be used, provided we can control their Hausdorff
dimension on a target interval. When the desired dimension exceeds the integer dimension of the

ambient space, we simply increase the ambient dimension; in practice we take R™ with m >
[dtarget ] Concretely, when dfrac € (0, 1) one may work in R"*1 with a 1D fractal factor %[0,

11", while for dfrac € [1,2) one may work in R"2 with a 2D fractal factor <[0, 1]".

Self-similar Cantor sets (OSC). A versatile replacement of the horseshoe is the generalized
two-map Cantor set Cr c R: start with [0, 1] and, at each step, remove the open middle interval of

length 1 — 2r, keeping two intervals of lengthr € (0, %) This self-similar set satisfies the open
set condition (OSC), and the Moran—Hutchinson formula yields
log 2

dimy(C,) = mo < HdimH (Cr)(Cr) <w]l2,4,8].

Asr 1 3, dimH (Cr)1 1,50 (0,1) is covered continuously. Hence for any dfrac € (0, 1) we may
take

r = 2-Udfrac & (O 3) dimy (Cr) = dirac,
and use M = Cy as the fractional component in Theorem 3.2.

To cover (0, 2) with purely self-similar factors, consider a product Cy1 <Cy2 @2 with rj € (0,

é). Since each 1D factor is an OSC self-similar set, one has dimH = dimp for each factor [2, Thm.
9.3]. Combining this with the general product bounds [2, Eq. (7.6) and Eq. (7.7)] yields the equality

_ log2 log 2
~log(1/rm)  log(1/rs)

dimgy (C,, x C,,) = dimp/(C,,) + dimy (C,,)

507



Therefore the range (0, 2) is obtained continuously by varying (r1,r2). In particular, for any

dfrac € (1, 2) one can choose dimH (Cr1) = dimH (Cr2) = 3dfrac (e.g., r1 = r2 = 2-2/dfrac) 5o
that dimH (Cr1 > Cr2) = dfrac. This 2D Cantor product can replace the horseshoe component M

when a 1D Cantor factor does not suffice.
Chaotic attractors as numerical substitutes. Chaotic attractors from other dynamical

systems also offer parameter-dependent fractals. For the Henon map f(x, y) = (1—ax2 +y, bx), there
are foundational rigorous results on chaotic dynamics and SRB-type behavior ™, but we do not rely
on a rigorous Hausdorff-dimension formula; reported “dimension values” in the literature are
typically numerical estimates (and in practice may refer to information/correlation/Kaplan-Yorke
dimensions). For the classical Lorenz system (o,p,p) = (10, 28, 8/3), numerical studies also report
fractal-dimension estimates near 2 (often around 2.06); see, e.g., Viswanath P! for an analysis of
fractal properties of the Lorenz attractor. These systems thus provide numerically tunable alternatives
to the horseshoe, but, unlike the explicit formula in Proposition 3.1, they do not furnish an analytic
dimension function covering the full (0, 2) range.

5.2. Generalizations and Future Directions

The alternative generators in Subsection 5.1 illustrate the modularity of our construction,
allowing flexibility in the fractal component. Here, we explore broader generalizations, leveraging
iterated function systems (IFS) as a general framework for fractal generation, and discuss
topological properties and future research directions in dynamical systems and geometric measure
theory.

The construction in Theorem 3.2 relies on the additive property of Hausdorff dimensions
under Cartesian products (Theorem 2.8). This approach extends beyond the Smale horseshoe and
the alternatives in Subsection 5.1. Any parameterdependent IFS producing a fractal set with a
continuous dimension function over a sufficient range can replace the horseshoe. For example, an

IFS with variable contraction ratios in R™M can generate fractal components with dimensions in (0,

k) for some k > 0 (cf. ). Combining such a component with a Euclidean set in R™ extends the
method to dimensions beyond (0, 2), provided the dimension function’s continuity is verified.

The topological properties of the constructed sets offer another avenue for generalization. The
Smale horseshoe’s invariant set Aj), is a Cantor set, totally disconnected with zero Lebesgue measure
(10, The final set S = M xE inherits properties from its components; for instance, modifying E
to a fractal set with integer dimension, under conditions ensuring Borel set properties, preserves
dimH (S) while altering connectedness or compactness [?. Analyzing the Hausdorff measure of S at
its critical dimension could further elucidate its geometric structure.

Future research could investigate the uniqueness of the constructed sets. While Theorem 3.2 ensures
existence, comparing sets generated by different systems (e.g., Smale horseshoe versus H’enon map)
for the same dimension may reveal variations in symbolic dynamics or stability [, Extending the
construction to non-Euclidean metric spaces, such as hyperbolic manifolds, could also enhance its
applicability in dynamical systems. These directions highlight the synergy between fractal geometry
and chaotic dynamics, opening new paths for studying sets with prescribed dimensions.
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